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Dynamics of wetting : local contact angles 
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We discuss the motion of a triple line for a fluid spreading on a flat solid surface in 
conditions of partial wetting : the equilibrium contact angle 8, is assumed to be finite 
but small : $ < 8, 4 1. We distinguish four regions : (1) a molecular domain of size a 
( x  a few Angstroms) very near the triple line, where the continuum description 
breaks down; (2) a proximal region (of length ale: and height ale,) where the long- 
range Van der Waals forces dominate; (3) a central region, where capillary forces and 
Poiseuille friction are the only important ingredients; (4) a distal region where 
macroscopic features (related to the size of the droplet, or to gravitational forces) 
come into play. In regions (2, 3, 4) the flow may be described in a lubrication 
approximation, and with a linearized form of the capillary forces. We restrict our 
attention to low capillary numbers Ca and expand the profiles to first order in Ca 
near the static solution. The main results are : (a)  the logarithmic singularity which 
would have occurred in a simple wedge picture is truncated by the long-range forces, 
a t  a fluid thickness ale,. This effect is more important, a t  small 8,, than the effects 
of slippage which have often been proposed to remove the singularity, and which 
would lead to a truncation thi'ckness comparable with the molecular size a ;  (5) in the 
central region, the local slope 8(z) grows logarithmically with the distance x from the 
triple line; (c) one can match explicitly the solutions in the central and distal region : 
we do this for one specific example: a plate plunging into a fluid with an incidence 
angle exactly equal to 0,. In  this case we show that, far inside the distal region, the 
perturbation of the slope decays like 1/x2. 

1. Introduction 
The dynamics of a moving contact line is important for many practical processes, 

but is complex : see for instance Dussan V. (1979). Some time ago, Huh & Scriven 
(1971) considered the Case of a simple fluid wedge (figure la) and showed that the 
wedge profile leads to a logarithmic singularity in the viscous dissipation. Many 
experiments have been conducted on moving contact lines : in particular the early 
results of Hoffmann (1975), Tanner (19791, and Lelah & Marmur (1981) show that, 
for simple liquids, on a completely wettable surface, the relation between line 
velocity U and dynamic contact angle 8 is essentially of the form 

(8 % I ) ,  (1) Ca = - = const. O3 rlu 
Y 

where 7 and y are the viscosity and the surface tension of the liquid. This relation is 
amazingly universal: it does not depend on the value of the spreading coefficient 

8 = Y S O - Y S L - Y  (8 > 0) (2) 

(where yso and ysL are the solid/air and solid/liquid interfacial energies). S measures 
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FIQURE 1. Fluid profiles near a contact line, in conditions of partial wetting. (a) The simple wedge 
model, leading to a logarithmic singularity in the dissipation. ( b )  After inclusion of a long-range 
Van der Wads force, the static profile is hyperbolic. (c) Imposing a small flow velocity U shifts the 
profile as shown. All the analysis in the text is restricted to the case of small equilibrium angles 0,. 

the driving force of the process, but U does not depend on S : this can be understood 
in terms of the precursor film, first observed by Hardy (1919). All the free energy S 
is burnt in the precursor film. The O3 factor in the Hoffmann-Tanner law (equation 
(1)) can then be understood as a superposition of a driving force y( 1 - cos 8) x $8* 
and a Huh-Scriven friction factor, essentially linear in 8 (de Gennes 1985). The same 
type of analysis can be applied to conditions of partial wetting, where S < 0, and 
where there exists a finite equilibrium angle 8,. In these conditions, there is no 
precursor film (Hardy 1919) and the driving force is the uncompensated Young force 
Y(cos8,-cosO). This leads to (de Gennes 1986) 

However, this simple picture leaves some open questions : 
(a)  certain logarithmic prefactors are treated as numerical constants. 
( b )  What provides the cut off in the logarithmic singularity ? 
(c) The very definition of the dynamic angle 8 is delicate: at small distances 

(< 100 pm) from the contact line, the local slope 8(z) is still significantly dependent 
on z, as shown by Ngan & Dussan V. (1982), and in more recent experiments by 
Dussan V. (to be published). 

The main aim of the present work is to discuss the local slopes 8(z), and the 
dominant physical cut-off for the line singularity. The standard procedure used in the 
past to remove the singularity was based on slippage at the solid/fluid interface 
(Hocking 1977 ; Hocking & Rivers 1982). Instead of the standard boundary condition 
u,(z = 0) = 0 at a fixed surface, a mixed condition is imposed: 
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Central 7 

FIQURE 2. The four regions in the profile: (1) molecular; (2) proximal (controlled by long range 
forces) ; (3) central (controlled by shear flow plus capillarity) ; (4) distal (controlled by shear flow 
plus gravitational forces). 

(where z is the normal to the interface). In most usual situations, the slippage length, 
b, should be comparable with a molecular size a t .  The effect of the mixed boundary 
condition is to suppress the singularity a t  wedge thicknesses smaller than b (or at 
distances x smaller than b / B ) .  At distances x % b / B ,  the liquid profile becomes 
universal - as pointed out in particular by Dussan V. (1976) - and depends only 
weakly (logarithmically) on the choice of b. 

The most detailed calculations of this type have been performed by Cox (1986). They 
ultimately lead to an equation of motion similar to (3), but extended to large angles 
(8,B, x 1). This equation of motion has been tested in recent measurements by 
Fermigier (1989), using a photographic measurement of 8 inside a capillary where the 
fluid is pushed at velocity U by a piston. The Cox predictions work very well: this 
shows that most of the dissipation near the moving contact line can be described in 
terms of macroscopic viscous friction. But it does not prove that slippage is the major 
physical effect - other processes, leading to different cut-offs near the line, would give 
the same level of agreement. 

The slippage process certainly exists, but it is only relevant for a thickness b x a,  
i.e. precisely in the regime where the whole continuum description breaks down : 
when the dynamic contact angle 8 is large (8 x l) ,  there is no characteristic length, 
other than a ,  to control the inner structure of the triple line. However, as we shall 
see (and as already announced by de Gennes 1985), the situation is improved if we 
deal with small angles 8 < 1. Here, the relevant thickness turns out to be a/O > a, 
and a continuum description may be applied to find the correct cut-off in the 
singularity, which is due to long-range Van der Waals forces, and not to slippage. 

We shall concentrate here on the situation of partial wetting, without any 
precursor film : this leads to a relatively simple problem ; but even so, we shall need 
to distinguish four spatial regions around the contact line : molecular, proximal, 
central and distal (figure 2). Our method starts from the exact static shapes, 
including long-range Van der Waals forces ($2). Then, in $3  we treat the velocity U 
as a perturbation, and find the first-order corrections to the static profile in the 

t There may exist exceptional cases where b $ a - for instance with a flow of entangled polymers 
along a passive wall, see de Gennes (1979). But this type of flow has not been demonstrated in the 
usual model system (silicone oil against silica). 
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'proximal' and 'central' regions. Finally, in $4 we show how to match these results 
with the meniscus, or 'distal ' profile, controlled in many examples by gravitational 
forces. 

A final introductory remark concerns orders of magnitude. Equation (3) shows 
that, in retraction (0 < O e ) ,  a contact line can exist only for velocities U below a 
certain threshold 

U,,, = const. -. 

At U > U,,, the retracting liquid leaves a permanent film on the solid. All the 
discussions in the following sections assume that 0 is close to O,, or equivalently that 
U < U,,,. Taking 0, = lo, y = 50 c.g.s. units, and 7 = P, we find U,,, x 

mm/s. Thus we are talking about low velocities, which are indeed most suitable for 
precise optical measurements on the profiles. 

Y@: 
'I 

2. Proximal and central regions 
2.1. Basic j b w  equation 

In a reference frame attached to the triple line (figure 1 b ) ,  we expect a fluid thickness 
f(x) which will incorporate the effects of capillarity, of long-range forces (described 
by a Hamaker constant A )  and of slow Poiseuille flows. We always restrict our 
attention to situations of small slopes : 

This will allow three simplifications : (a)  a linearized form for the capillary pressure 
- y i3*f/:/ax2; (b )  a lubrication approximation for the flow ; ( c )  a simple description of 
the Van der Waals forces. The basic equation is then (de Gennes 1985): 

The left-hand side represents Poiseuille friction. The first term on the right-hand side 
is the gradient of the disjoining pressure l7 due to long-range Van der Waals forces, 

It is convenent to introduce a length a 

(a is of the order of a molecular size: a few Angstroms). Introducing dimensionless 
variables e* 8 

2 = "f, a y = e x  a 

and a perturbation parameter 
3u'I 3Ca 

Y e  0: 

z Zll l)  #c=-zI- 2 

E = - - -  - 

we can cast (4) into the form 
3 
2 2  

where z' = dz/dy, etc. 
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2.2. The static limit 
For e = 0, equation (8) may be integrated exactly (Berry 1974) and the result is 

z;=-1+?J2 (9) 

The profile is hyperbolic (figure 1 b) .  The slope d5/dx deviates from its macroscopic 
value (8,) a t  thicknesses [ x a/8,  (corresponding to zo < 1) .  It is important to  check 
that (9) gives slopes d[/dx that are small, so that the approximations (a,  b,  c) listed 
in $2.1 do apply. Indeed, we find 

Even in the most dangerous region (y --f l ) ,  we have d5/dx x 8,/zo x 8, a / [  and the 
slope becomes large only when we go down to [ x a, i.e. when we enter the molecular 
domain. 

3. First-order calculation of the proximal and central profiles 
We now return to (8) and treat the e term (describing the effects of the line 

velocity, figure l c )  as a perturbation, following a method used by Joanny (1984) in 
a similar problem. We define 

F = 92'2 -&'-2 (11) 

In the static case (s = 0) ,  F is a constant. I n  the dynamic case (s + 0) ,  F is variable: 
we consider F as a function of y, when z(y) is the steady-state profile. We can then 
show (using (8)) that 

It is then easy to compute F to first order in E :  

where zo is the static solution, (9). The integral in (13) can be performed by setting 
u = sinht, and the result is 

F = &+eArgsinhy. (14) 

Let us now focus our attention on the region y 9 1, where the effect of the long- 
range forces has become negligible, and F+;zf2. Here, using (11) and (14), we arrive 
a t  a local slope 

dx: 

Equation (15) is our central result. The logarithmic behaviour of 8-8, is not a 
surprise, and has been found in all slippage models. But the characteristic length 
Ax x a/8: showing up in the logarithm is non-trivial : the long-range forces provide a 
natural cut-off for the singularity at fluid thicknesses A[ x 8, Ax x a/B,. This cut-off 
dominates over slippage effects which lead to A&-, x a (a molecular size). 

It may also be worthwhile to emphasize the physical meaning of the function F: 
this can be done by an inspection of the dissipation TZ (per unit length of line) 
between the line (x = xL) and point (x): 
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To second order in U,  we may replace [(x) by the static profile, obtaining 

P. G. de Gennes, X .  Hua and P .  Levinson 

The integral in (17) may be expressed in terms of the F-function via (13). In the 
central region (u B l ) ,  F is related to the local slope 8 via (11 ) :  

2~ - i = ez/e; - 1 x (cos 0, - cos e) 218:. 

TZ = uy (cos ee - cos 0). 

(18) 

(19) 

Inserting this into (17),  we arrive at  

Equation (16) expresses the dissipation as the product of a flux (U)  and a non- 
compensated Young force y (cos Be - cos e), and could have been written down 
directly. 

4. The meniscus (or distal) region 
4.1. Incorporation of gravity 

The final problem is to match the solution (15) in the central region to an external 
boundary condition very far from the line. We shall discuss this for a relatively 
simple, but instructive example, shown on figure 3. Here we have a solid plate 
inclined exactly at  the angle Be,  and we move this plate in its own plane, at a velocity 
U. For U = 0, the liquid was horizontal everywhere. But for a finite U > 0, we expect 
a dip in the liquid surface. 

Incorporating the gravitational forces p g  (where p is the fluid density) and 
dropping the long-range forces, we arrive at a modified equation for the profiles 

*u 
c 

We define a capillary length K - ~  via 
K2 = ps 

Y '  

0; 

and a dimensionless number 
K a  

p = - .  

Typically I(. x lo-'. Retaining our former definitions of z and y, we can cast (20) into 
the form 

(23) 
e - = --"'+/$(2'-1). 
22 

It is convenient to separate the dynamic correction v to the profile: 

dz - = l+v (y ) .  
dY 

(24) 

To first order in e we may replace x by y in the left-hand side of (23). This gives 

Note that we have shifted the origin to the actual position of the triple line (point I 
in figure 3). The boundary conditions are 



Dynamics of wetting : local contact angles 61 

X 

FIQURE 3. A specific example: plate plunging exactly at the equilibrium angle Be.  In static 
conditions, the fluid is a simple wedge. When the plate moves at  velocity U ,  the contact line is 
shifted by a length 6, and a perturbed region extends up to the capillary length K - ~ .  

(a) for py + 1 (matching to the central region), we must follow (15): 

v(y  + O )  +cln (By) ; 

(b )  for py B 1, the fluid must return to a horizontal slope 

v(y - f+  co) -to. 
4.2. Solution 

It is sometimes convenient to separate from v the term (which we shall call E Q )  that 
is obtained in the absence of gravity: 

v = cQ+w. (27) 
We know from (15) that, in the central region, 

Q = In (2y). 

The equation for w deduced from (26) is 

and a general solution is of the form 

when the first two terms are solutions of the homogeneous equation (Q = 0) while the 
third term is one particular solution of (26). Here 

Q(y-m)  = $,e-@lu-ml). (31) 

The boundary condition at  y-f co immediately gives k’ = 0, while the boundary 
condition at  y = 0 imposes 

k - dm & e-pm In (2m) = 0, 

or k = + 1 n G ) ,  

where 7 = 1.78 is Euler’s constant. 
(33) 
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The aspect of the solution v(y) is shown on figure 3. At large distances (py > l),  
one can see immediately from (25) that v decreases only slowly : 

Equation (34) expresses a simple balance between shear stresses and gravitational 
pressures. 

One interesting observable is the shift 6 x 01 in the position of the contact line, 
due to  the motion. Returning to figure 3, we see that 

Integrating (25) over y, we get 

p 2 J r v d y  = y-v’(y) E = --E&’-w’, E 

Y 

and finally 

p2 (om v dy = - w’(0) = 2,uks, (37) 

the last form being obtained after explicit differentiation of G in (30). 
Inserting (37) into (35), and making use of (33) for k, we arrive at 

Typically, 6 z 1 5 ~ ~ ~ ’ .  

5. Concluding remarks 
We have constructed the liquid profile in all three regions where continuum 

mechanics may be applied : proximal, central and meniscus. Of particular interest is 
the result for the central region (equation (15)) which shows precisely how the 
existence of long-range Van der Waals forces suppresses the singularity a t  the 
contact line. Of course it may happen that dissipation processes in the proximal 
region - i.e. a t  the molecular scale - play a role: however, if the local viscosity a t  
these small scales is not much higher than the bulk viscosity 7, we can see that the 
proximal region is not important. 

Equation (15) may be of some practical use in discussing experiments where the 
local slope O(s) is measured optically. Unfortunately, the data of Ngan & Dussan V. 
(1982) are taken for a solid which is probably completely wetted (0: < 0) and thus do 
not correspond exactly to our problem. But, for conditions of partial wetting, with 
ideally flat surfaces (no hysteresis), (15) should be applicable. 

A final remark concerns the dissipation : with the example described in figure 3, we 
get convergent answers for the meniscus shape. However, the dissipation itself 
remains divergent a t  large scales. To order V, i t  is always given by (171, or explicitly 
bY 

and i t  does depend on the horizontal size of the basin (defined in (36) by xmax). This 
is an  intrinsic feature of the wedge geometry which is imposed in figure 3. 
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Our analysis was strictly restricted to situations of partial wetting. In conditions 
of complete wetting, the discussion is more complex, because it must include the 
precursor film. The existence of the precursor depends on Van der Waals forces (or 
other long-range forces): thus it is obvious that, in this situation too, triple-line 
motions cannot be discussed without due incorporation of the long-range forces. 

When the spreading coefficient S is large ( S l y  x l),  the precursor is of molecular 
thickness, and its tip cannot be described by hydrodynamic theories. But when 
S l y  4 1, the precursor is relatively thick, and continuum theory applies. In this case, 
near the tip, the static shape is also a good starting point, as shown by Joanny (1984). 

This work was initiated by a seminar of E. Dussan V. at  Exxon Corporate 
Research in October 1988. Discussions with J.-F. Joanny and F. Brochard have also 
been of great help. 
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